∵CE、CF分别平分∠ACB和∠ACD,
∴∠ECA=
1
2 ∠ACB,∠FCA=
1
2 ∠ACD,
∴∠ECF=∠ECA+∠ACF=
1
2 ×180°=90°,
∵AE ∥ CF,AF ∥ CE,
∴四边形AECF是矩形,
∴AC=EF=b,AN=CN,
∴AM=BM,
∴MN=
1
2 BC=
1
2 a,
∴ME=MN-EN=MN-
1
2 EF=MN-
1
2 AC=
1
2 a-
1
2 b=
a-b
2 .
故选B.
∵CE、CF分别平分∠ACB和∠ACD,
∴∠ECA=
1
2 ∠ACB,∠FCA=
1
2 ∠ACD,
∴∠ECF=∠ECA+∠ACF=
1
2 ×180°=90°,
∵AE ∥ CF,AF ∥ CE,
∴四边形AECF是矩形,
∴AC=EF=b,AN=CN,
∴AM=BM,
∴MN=
1
2 BC=
1
2 a,
∴ME=MN-EN=MN-
1
2 EF=MN-
1
2 AC=
1
2 a-
1
2 b=
a-b
2 .
故选B.