向量a=(cosb,sinb),向量b=(√3 ,-1),
∴ |a|=√(cos²b+sin²b)=1
|b|=√(3+1)=2
|2a-b|²=4a²+b²-4a.b
=4+4-4(√3cosb-sinb)
=8+4(sinb-√3cosb)
=8+8[sinb*(1/2)-cosb*(√3/2)]
=8+8[sinbcos(π/3)-cosb*sin(π/3)]
=8+8sin(b-π/3)
∴|2a-b|²的最大值是16,最小值是0
即 |2a-b|的范围是[0,4]
向量a=(cosb,sinb),向量b=(√3 ,-1),
∴ |a|=√(cos²b+sin²b)=1
|b|=√(3+1)=2
|2a-b|²=4a²+b²-4a.b
=4+4-4(√3cosb-sinb)
=8+4(sinb-√3cosb)
=8+8[sinb*(1/2)-cosb*(√3/2)]
=8+8[sinbcos(π/3)-cosb*sin(π/3)]
=8+8sin(b-π/3)
∴|2a-b|²的最大值是16,最小值是0
即 |2a-b|的范围是[0,4]