在△ABC中,若tanA(tanB-tanC)=tanBtanC,则(sinA/sinC)^2+(sinB/sinC)^

2个回答

  • 因为 tanA(tanB-tanC)=tanBtanC

    即 sinA/cosA(sinB/cosB-sinC/cosC)=sinBsinC/cosBcosC

    sinA(sinBcosC-cosBsinC)=cosAsinBsinC

    sinAsinBcosC=sinC(sinAcosB+cosAsinB)=sinCsin(A+B)=(sinC)^2

    (sinA/sinC)^2+(sinB/sinC)^2

    =[ (sinA)^2+(sinB)^2]/(sinC)^2

    =[ (sinA)^2+(sinB)^2]/sinAsinBcosC

    =sinA/sinBcosC+sinB/sinAcosC

    =sin(B+C)/sinBcosC+sin(A+C)/sinAcosC

    = (sinBcosC+cosBsinC)/sinBcosC+(sinAcosC+cosAsinC)/sinAcosC

    =2+(sinAcosBsinC+cosAsinBsinC)/sinAsinBcosC

    =2+[sinC(sinAcosB+cosAsinB)/sinAsinBcosC

    =2+sinCsin(A+B)/sinAsinBcosC

    =2+(sinC)^2/sinAsinBcosC [将sinAsinBcosC=(sinC)^2代入原式]

    =3