解题思路:根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可,再根据直线l与函数f(x)、g(x)的图象都相切建立等量关系,即可求出t的值.
f′(x)=[1/x],f′(1)=1,故直线l的斜率为1,
切点为(1,f(1)),即(1,0),
∴直线l:y=x-1 ①
又∵g′(x)=x,直线l:y=x-1与函数g(x)的图象都相切
∴令g′(x)=1,解得x=1,即切点为(1,[1/2]+t)
∴l:y-([1/2]+t)=x-1,即y=x-[1/2]+t ②
比较①和②的系数得-[1/2]+t=-1,∴t=-[1/2].
故答案为:-[1/2].
点评:
本题考点: 利用导数研究曲线上某点切线方程.
考点点评: 本题主要考查了利用导数研究曲线上某点切线方程,同时考查了转化的思想,属于中档题.解题时要认真审题,注意合理地进行等价转化.