解题思路:求出函数f(x)的导函数,代入g(x)=f(x)-f′(x)整理,由g(x)是奇函数得到g(0)=0,g(-1)=-g(1),则b,c的值可求.
由f(x)=x3+bx2+cx,得
f′(x)=3x2+2bx+c,则
g(x)=f(x)-f′(x)=x3+(b-3)x2+(c-2b)x-c,
∵g(x)是奇函数,
∴g(0)=-c=0,c=0.
∴g(x)=x3+(b-3)x2-2bx.
由g(-1)=-1+b-3+2b=3b-4,
-g(1)=-1-b+3+2b=b+2.
g(-1)=-g(1)得:3b-4=b+2,b=3.
∴b=3,c=0.
点评:
本题考点: 函数奇偶性的性质;导数的运算.
考点点评: 本题考查了导数的运算,考查了函数的奇偶性的性质,是基础题.