S(n+1)=2n^2+3n+1
Sn=2(n-1)^2+3(n-1)+1
=2(n^2-2n+1)+3n-3+1
=2n^2-4n+2+3n-3+1
=2n^2-n
S(n+1)-Sn=a(n+1)=2n^2+3n+1-(2n^2-n)=2n^2+3n+1-2n^2+n=4n+1=4n+4-3=4(n+1)-3
所以
an=4n-3
S(n+1)=2n^2+3n+1
Sn=2(n-1)^2+3(n-1)+1
=2(n^2-2n+1)+3n-3+1
=2n^2-4n+2+3n-3+1
=2n^2-n
S(n+1)-Sn=a(n+1)=2n^2+3n+1-(2n^2-n)=2n^2+3n+1-2n^2+n=4n+1=4n+4-3=4(n+1)-3
所以
an=4n-3