直接用积分中值定理
证明:若函数f(x,y)在有界闭区域D上连续,函数g(x,y)在D上可积,且g(x,y)≥0,(x,y)属于D,则至少存
2个回答
相关问题
-
设D是一有界闭域,函数f(x,y)在D上连续,在D内偏导数存在,且满足等式∂f(x,y)∂x+2∂f(x,y)∂y=-f
-
设函数f(x,y)在平面区域D上连续,并在任意一个小区域σ上∫∫σf(x,y)dσ=0,证明:在D内f(x,y)≡0
-
1.已知函数f(x)、g(x)在R上有定义,且f(x-y)=f(x)g(y)-g(x)f(y),若f⑴=f⑵≠0,则g⑴
-
设u(x,y)在平面有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足∂2u∂x∂y≠0及∂2u∂x2+∂2u∂y
-
证明 若任意x y 属于R有 f x+y=fx+fy,且fx在0连续,则函数fx在R上连续,且
-
若函数y=f(x)是区间D上的增函数,且对任意x∈D都有f(x)<0,则函数y=1/f(x)在区间D上的单调性是
-
证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax
-
给定闭区域D边界的一些离散点{x,y},给定函数f在D上的一些离散函数值{x,y,z},求f在D上的数值积分.
-
定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开
-
g(x,y)=|x-y|f(x,y),f(x,y)在(0,0)点连续且f(0,0)=0,则g(x,y)