αβ是关于x的方程x^2+(m-2)x+1=0的两根
α^2+(m-2)α+1=0
β^2+(m-2)β+1=0
αβ=1 α+β=2-m
(1+mα+α^2)(1+mβ+β^2)=[α^2+(m-2)α+1+2α][β^2+(m-2)β+1+2β]
=(0+2α)(0+2β)=4αβ=4
通分化简得(2x+13)/(x^2+13x+40)=(2x+13)/(x^2+13x+42)
2x+13=0或x^2+13x+40=x^2+13x+42
x=-13/2
αβ是关于x的方程x^2+(m-2)x+1=0的两根
α^2+(m-2)α+1=0
β^2+(m-2)β+1=0
αβ=1 α+β=2-m
(1+mα+α^2)(1+mβ+β^2)=[α^2+(m-2)α+1+2α][β^2+(m-2)β+1+2β]
=(0+2α)(0+2β)=4αβ=4
通分化简得(2x+13)/(x^2+13x+40)=(2x+13)/(x^2+13x+42)
2x+13=0或x^2+13x+40=x^2+13x+42
x=-13/2