(1)
点(an,Sn)都在函数f(x)=-1/2x+1/2
那么Sn=-1/2an+1/2
当n=1时,a1=S1=-1/2a1+1/2
得到a1=1/3
S(n+1)=-1/2a(n+1)+1/2
∴a(n+1)=S(n+1)-Sn=-1/2a(n+1)+1/2an
3/2a(n+1)=1/2an
a(n+1)/an=1/3
∴{an}为等比数列,公比q=1/3
∴an=1/3^n
(2)
Sn=-1/2*an+1/2
=-1/2*1/3^n+1/2
bn=lg(1-2Sn)+2
=lg(1/3^n)+2
=2-nlg3
b(n+1)-bn=-lg3
{bn}为等差数列,公差为-lg3
bn>0得nlg3