因为A点在y=-2/x上
所以设A(x,-2/x)
又AB//x
则B点纵坐标等于A点纵坐标,即yB=-2/x
将yB=-2/x带入直线y=x得:xB=-2/x
则B(-2/x,-2/x)
所以AB^2=(x+2/x)^2,OA=x^2+(2/x)^2
即AB^2-OA^2=(x+2/x)^2-x^2-(2/x)^2
=x^2+4+(2/x)^2-x^2-(2/x)^2
=4
因为A点在y=-2/x上
所以设A(x,-2/x)
又AB//x
则B点纵坐标等于A点纵坐标,即yB=-2/x
将yB=-2/x带入直线y=x得:xB=-2/x
则B(-2/x,-2/x)
所以AB^2=(x+2/x)^2,OA=x^2+(2/x)^2
即AB^2-OA^2=(x+2/x)^2-x^2-(2/x)^2
=x^2+4+(2/x)^2-x^2-(2/x)^2
=4