导数数以及三角函数题

1个回答

  • (11)

    f(x)=acoswx-sinwx central symmetric about M( π/3,0), w>0

    min f(x) = f(π/6)

    1 possible value of a+w

    Solution:

    f(x)=acoswx-sinwx

    f'(x) = -awsinwx- wcoswx

    f'(π/6) = 0

    -asin(πw/6)- cos(πw/6) =0 (1)

    f(x)=acoswx-sinwx central symmetric about M(π/3,0)

    f(0) = a

    f(2π/3) = -f(0)

    f(2π/3) = acos(2πw/3)-sin(2πw/3) =-a

    a(1+ cos(2πw/3)) = sin(2πw/3)

    a = tan(πw/3) (2)

    sub (2) into (1)

    sin(πw/6)sin(πw/3)+ cos(πw/6)cos(πw/3) =0

    cos(πw/6) = 0

    πw/6 = π/2, 3π/2,...

    w = 3, 9, .

    from (1)

    -awsin(πw/6)- wcos(πw/6) =0

    w=3

    a=0

    1 possible value a+w = 0+3 =3

    (12)

    y=f(x)=a^x ,( a>0, a≠1), symmetric about y=x

    g(x) = f(x)[f(x)+f(2)-1]

    y=g(x) is increasing [1/2,2]

    Find: range of a

    Solution:

    y=f(x)=a^x ,( a>0, a≠1), symmetric about y=x

    我不懂,不过我觉得题目有点问题.

    y=f(x)=a^x ,( a>0, a≠1), 不可能对称于 y=x

    因为

    (0,1) 属于y=f(x)

    (0,1)的相关对,y=x, 的称点是(1,0)

    但是(1,0)不属于y=f(x)?