(Ⅰ)数列 {
1
S n } 是以2为首项,2为公差的等差数列.证明如下:
∵n≥2时,a n+2S nS n-1=0,∴S n-S n-1+2S nS n-1=0
∴
1
S n -
1
S n-1 =2
∵ a 1 =
1
2 ,∴
1
S 1 =2
∴数列 {
1
S n } 是以2为首项,2为公差的等差数列;
(Ⅱ)由(Ⅰ)知
1
S n =2+2(n-1)=2n,∴S n=
1
2n ;
∵n≥2时,a n+2S nS n-1=0,
∴a n=-2×
1
2n ×
1
2(n-1) =
1
2n(1-n)
∴a n=
1
2 ,n=1
1
2n(1-n) ,n≥2 .