log(a^N)(b^M)=M/Nlog(a)(b)怎么推导?
3个回答
log(a^N)(b^M)=lg(b^M)/lg(a^N)=M/N*lgb/lga=M/Nlog(a)(b)
换为同底的对数式就可以了
相关问题
对数运算性质3的推导用^表示乘方,用log(a)(b)表示以a为底,b的对数log(a)(M^n)=nlog(a)(M)
换底公式推导过程1.log(a)(b)=1/log(b)(a) 2.log(a^n)(b^m)=m/n*[log(a)(
对数基本对数基本公式log(a)(M^n)=nlog(a)(M)
log a^m(b^n)=(n/m)*log a(b)
log(a)M*log(b)N=?
各位老师好,求教个数学问题;一个对数换底公式问题;log(a) (m^n)=nlog(a)(m).这个.
帮我看一眼这些公式对不对?1.a^log_a^b =b2.log_a^〖m×n〗= log_a^m+log_a^n3.l
对数log(a^n)M=1/n×log(a) M怎么证明?
log a (m^n)=(log a m)^n?
b/m(m+a)+b/(m+a)(m+2a)+b/(m+a)(m+3a)+...+b/(n-a)n这公式怎么算会得出(1