证明:
∵AB∥CD
∴∠BCD=∠ABC=35°(两直线平行,内错角相等)
又∵∠FAB=∠ACB+∠ABC(一个外角等于两个不相邻的内角和)
∠FAB=70°
∴∠ACB=∠FAB-∠ABC=35°
所以∠ACB=∠BCD
∴CE是∠ACD的平分线
证明:
∵AB∥CD
∴∠BCD=∠ABC=35°(两直线平行,内错角相等)
又∵∠FAB=∠ACB+∠ABC(一个外角等于两个不相邻的内角和)
∠FAB=70°
∴∠ACB=∠FAB-∠ABC=35°
所以∠ACB=∠BCD
∴CE是∠ACD的平分线