解题思路:甲、乙两只闹钟走每小时的准确时间分别是:58分钟和62分钟,从上午11点时到下午3:21甲闹钟经过的时间是261分,在261分中甲闹钟经过的准确时间是:261÷58=[9/2](小时);在相同的时间内,那么乙闹钟在不准确的表面经过的时间是:[9/2]×62=279(分钟)=4小时39分钟,然后加上上午11时即可求出这时乙闹钟上指示的时刻.
甲闹钟每小时的准确时间:1小时-2分钟=58分钟,
乙闹钟每小时的准确时间:1小时+2分钟=62分钟,
15:21-11:00=4小时21分=261分;
在261分中甲闹钟经过的准确时间是:
261÷58=[9/2](小时);
那么乙闹钟在不准确的表面经过的时间是:
[9/2]×62=279(分钟)=4小时39分钟,
这时乙闹钟上指示的时刻是:
11:00+4小时39分钟=15:39;
答:这时乙闹钟上指示的时刻是 15:39.
故答案为:15:39.
点评:
本题考点: 时间与钟面.
考点点评: 在求出小菊从出去到回来的这段准确时间的基础上,得出乙闹钟在不准确的表面经过的时间,是本题的解答关键.