f(x)可导,则其导函数定义域内必连续但不一定可导
f(x)在(a,b)内可导,且其导数为f’(x),那么f'(x)在(a,b)上是否连续?请说明理由
3个回答
相关问题
-
f(x)在[a,b]上可导,f(x)的导数是否在[a,b]上连续
-
设f(x)在[a,b]上连续,(a,b)内可导,且f'(x)≠0,f(a)f(b)
-
设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
-
设f(x)在【a,b】上连续,在(a,b)内二阶可导,且f(a)=f(b)=f(c),a
-
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续
-
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)
-
设f(x)在[a,b]上连续,在(a,b)内可导且f′(x)≤0,并有 证明:在(a,b)内有F'(x)≤0
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)不等于0.