设正实数a,b,c 使/a-2b/ + 根号(3b-c)+(3a-2c)^2=0求a比b比c
1个回答
/a-2b/ + 根号(3b-c)+(3a-2c)^2=0
因为三者都≥0
则a-2b=0
3b-c=0
3a-2c=0
a=2b,3b=c 3a=2c
则a:b:c=2:1:3
相关问题
设正实数a、b、c使绝对值a-ab+根号下3b-c +(3a-2c)^2=0,求a:b:c的值
设a,b,c均为正实数,且a+b=c,求证:a^(2/3)+b^(2/3)>c^(2/3)
设实数a,b,c满足a+b+c+3=2(√(a-3+√(b+4)+√(c-1)),求a^2+b^2+c^2的值
a b c 为正实数,求证a/(a+2b+c)+b/(a+b+2c)+c/(2a+b+c)>=3/4
已知a,b,c为正实数,a+b+c=3求证:(a-c)^2/a+(b-a)^2/b+(c-b)^2/c≥(4/3)*(a
求人帮我做此题:设实数a,b,c满足|a-2b|+根号下3b-c+(3a-2c)的平方=0,求a:b:c的值
b比c=2比3比4,且a-2b+3c=16,求a+2b+3c的值
设abc为正实数.且A+B=C 求证a^(2/3)+b^(2/3)>c^(2/3)
设实数a,b,c满足a2+2b2+3c2=[3/2],求[12a
设实数a、b、c、满足a+b+c-2a^2/1-2(b+1)^2/1-2(c-1)2/1+3=0求a^2+b^2+c^2