(1)上述分解因式的方法是提公因式法,共应用了2次.
(2)需应用上述方法2004次,结果是(1+x)2005.(3)原式=(1+x)[1+x+x(x+1)]+x(x+1)2+…+x(x+1)n,
=(1+x)2(1+x)+x(x+1)2+…+x(x+1)n,
=(1+x)3+x(x+1)3+…+x(x+1)n,
=(x+1)n+x(x+1)n,
=(x+1)n+1.
(1)上述分解因式的方法是提公因式法,共应用了2次.
(2)需应用上述方法2004次,结果是(1+x)2005.(3)原式=(1+x)[1+x+x(x+1)]+x(x+1)2+…+x(x+1)n,
=(1+x)2(1+x)+x(x+1)2+…+x(x+1)n,
=(1+x)3+x(x+1)3+…+x(x+1)n,
=(x+1)n+x(x+1)n,
=(x+1)n+1.