解析:∵|a-b|=2√5/5,
∴a^2-2a.b+b^2=4/5
又a^2=│a│^2=(cosα)^2+(sinα)^2=1
b^2=│b│^2=(cosβ)^2+(sinβ)^2=1,
∴a.b=3/5
∴cos(α-β)=cosαcosβ+sinαsinβ=a.b=3/5
∵-π<β<0,0<α<π/2,
∴0<α-β<3π/2,且cos(α-β)=3/5>0
则0<α-β<π/2,-π/2<β<0
sinβ=-5/13,cosβ=12/13
∴12cosa-5sina=39/5
联立(cosα)^2+(sinα)^2=1,
解得sinα=(3√46+15)/65