解题思路:本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是
C
4
8
,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得
由题意知本题是一个等可能事件的概率,
从正方体中任选四个顶点的选法是
C48=70,
其中有4点共面的有四点共面的取法有 6+6=12 (种),
∴4点恰能构成三棱锥的有70-12=58(种),
四个面都是直角三角形的三棱锥有4×6=24个,
∴所求的概率是P=[24/58]=[12/29],
故答案为:[12/29].
点评:
本题考点: 棱柱的结构特征;等可能事件的概率.
考点点评: 本题考查等可能事件的概率,考查正方体和三棱锥之间的关系,考查三棱锥的结构特征,本题是以概率为载体,实际上考查立体几何的知识,明确“正方体的8个顶点构成的四面体的有多少”是关键,“四个面都是直角三角形的三棱锥有多少”是难点,属于难题.