由x 2-2x-3>0解得x<-1或x>3,
所以函数f(x)的定义域为(-∞,-1)∪(3,+∞),
因为y=log 2t递增,而t=x 2-2x-3在(-∞,-1)上递减,在(3,+∞)上递增,
所以函数f(x)的减区间为(-∞,-1),增区间为(3,+∞),
由题意知,函数f(x)在区间E上单调递减,则E⊆(-∞,-1),
而(-3,-1)⊆(-∞,-1),
故选A.
由x 2-2x-3>0解得x<-1或x>3,
所以函数f(x)的定义域为(-∞,-1)∪(3,+∞),
因为y=log 2t递增,而t=x 2-2x-3在(-∞,-1)上递减,在(3,+∞)上递增,
所以函数f(x)的减区间为(-∞,-1),增区间为(3,+∞),
由题意知,函数f(x)在区间E上单调递减,则E⊆(-∞,-1),
而(-3,-1)⊆(-∞,-1),
故选A.