(1)、CF⊥BE于F,CD⊥AB于D
C,F,D,B四点共圆
角DFB=角BCD = 角CAB
三角形BAE 相似于 三角形BFD
AE/FD = AB/BF
BF•AE=FD•BA
(2)、
BC = 3,BD = 1.8
BE = √(BC^2 +CE^2) = √(9+x^2)
BF * BE = BC*BC
BF = 9/√(9+x^2)
CD^2 = BC^2 - BD^2
CD = 2.4
AC = 4,AB = 5
AE = AC - CE = 4 - x
FD = BF•AE / AB
y = 9/√(9+x^2) * (4-x)/5
= (9/5) * (4-x) / √(9+x^2)