解微分方程y"+9y=sin3x

1个回答

  • 常数变易法

    先解y''+ 9y = 0

    其特征方程为t² + 9 = 0

    t = ±3i

    则通解为y = C1cos3x + C2sin3x

    现在令y''+ 9y = sin3x有形如y = f(x)cos3x + g(x)sin3x的解,且令y' = f(x)[cos3x]' + g(x)[sin3x]',得到f'(x)cos3x + g'(x)sin3x = 0

    代入原式得到,- 3f'(x)sin3x - 9f(x)cos3x + 3g'(x)cos3x - 9g(x)sin3x + 9f(x)cos3x + 9g(x)sin3x = sin3x

    化简,- 3f'(x)sin3x + 3g'(x)cos3x = sin3x

    由f'(x)cos3x + g'(x)sin3x = 0

    联立解得f(x) = (sin6x)/36 - x/6 ,g(x) = -(cos6x)/36

    则其中一个特解为y = (sin6xcos3x)/36 - (xcos3x)/6 - (sin3xcos6x)/36 = (sin3x)/36 - (xcos3x)/6

    则原方程通解为y = C1cos3x + C2sin3x + (sin3x)/36 - (xcos3x)/6

    也可以写作y = C1cos3x + C2sin3x - (xcos3x)/6