答案选B
由l2∥PF2,知道直线PF2的斜率为-b/a
用点斜式写出PF2的方程为y=-b/a(x-c)
与PF1的方程y=b/a x 联立得到
P点坐标为(c/2,bc/2a)
又∵l2⊥PF1,
∴PF1的斜率为a/b
用P与F1的坐标表示直线PF1的斜率为
bc/2a ÷ 3c/2 = a/b
解得b^2/a^2 = 3
∴e^2=1+3=4
∴离心率e=2
选B
答案选B
由l2∥PF2,知道直线PF2的斜率为-b/a
用点斜式写出PF2的方程为y=-b/a(x-c)
与PF1的方程y=b/a x 联立得到
P点坐标为(c/2,bc/2a)
又∵l2⊥PF1,
∴PF1的斜率为a/b
用P与F1的坐标表示直线PF1的斜率为
bc/2a ÷ 3c/2 = a/b
解得b^2/a^2 = 3
∴e^2=1+3=4
∴离心率e=2
选B