设曲线上的点是A(x,y),则有x^2=2y+2>=0,y>=-1
那么有PA^2=(x-0)^2+(y-a)^2=x^2+y^2-2ay+a^2=y^2+(2-2a)y+a^2+2=[y+(1-a)]^2+2a+1
对称轴是y=-(2-2a)/2=a-1,
(1)当a-1=0时有当y=a-1时有最小值,是PA^2=2a+1,即最小值是PA=根号(2a+1)
设曲线上的点是A(x,y),则有x^2=2y+2>=0,y>=-1
那么有PA^2=(x-0)^2+(y-a)^2=x^2+y^2-2ay+a^2=y^2+(2-2a)y+a^2+2=[y+(1-a)]^2+2a+1
对称轴是y=-(2-2a)/2=a-1,
(1)当a-1=0时有当y=a-1时有最小值,是PA^2=2a+1,即最小值是PA=根号(2a+1)