在△ABC中,若sinA+sinB=sinC(cosA+cosB).

1个回答

  • 解题思路:(1)已知等式利用正弦定理化简得到关系式c(cosA+cosB)=a+b,再利用三角形射影定理得到a=b•cosC+c•cosB,b=c•cosA+a•cosC,表示出a+b,联立两式求出cosC的值为0,确定出C的度数为90°,即可对于三角形ABC形状为直角三角形;

    (2)由c及sinC的值,利用正弦定理求出外接圆的半径R,表示出a与b,根据内切圆半径r=[1/2](a+b-c),将a与b代入并利用两角和与差的正弦函数公式化简,根据正弦 函数的值域即可确定出r的范围.

    (1)根据正弦定理,原式可变形为:c(cosA+cosB)=a+b①,

    ∵根据任意三角形射影定理得:a=b•cosC+c•cosB,b=c•cosA+a•cosC,

    ∴a+b=c(cosA+cosB)+cosC(a+b)②,

    由于a+b≠0,故由①式、②式得:cosC=0,

    ∴在△ABC中,∠C=90°,

    则△ABC为直角三角形;

    (2)∵c=1,sinC=1,∴由正弦定理得:外接圆半径R=[c/2sinC]=[1/2],

    ∴[a/sinA]=[b/sinB]=[c/sinC]=2R=1,即a=sinA,b=sinB,

    ∵sin(A+[π/4])≤1,

    ∴内切圆半径r=[1/2](a+b-c)=[1/2](sinA+sinB-1)=[1/2](sinA+sinB)-[1/2]=

    2

    2sin(A+[π/4])-[1/2]≤

    2−1

    2,

    ∴内切圆半径的取值范围是(0,

    2−1

    2].

    点评:

    本题考点: 正弦定理;余弦定理.

    考点点评: 此题考查了正弦、余弦定理,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.