既然是等差数列
Sn=na1+n(n-1)d/2=m
Sm=ma1+m(m-1)d/2=n
上式相减得
(n-m)a1+(n^2-n-m^2+m)d/2=m-n
a1+(n+m-1)d/2=-1
S(n+m)
=(n+m)a1+(n+m)(n+m-1)d/2
=(n+m)[a1+(n+m-1)d/2]
=-n-m
既然是等差数列
Sn=na1+n(n-1)d/2=m
Sm=ma1+m(m-1)d/2=n
上式相减得
(n-m)a1+(n^2-n-m^2+m)d/2=m-n
a1+(n+m-1)d/2=-1
S(n+m)
=(n+m)a1+(n+m)(n+m-1)d/2
=(n+m)[a1+(n+m-1)d/2]
=-n-m