解题思路:先通过正方体的体积,求出正方体的棱长,然后求出球的半径,然后求出球的表面积.
正方体体积为8,可知其边长为2,
正方体的体对角线为
4+4+4= 2
3,
即为球的直径,所以半径为
3,
球的表面积为4π
32 =12π.
故答案为:12π.
点评:
本题考点: 球内接多面体;球的体积和表面积.
考点点评: 本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.
解题思路:先通过正方体的体积,求出正方体的棱长,然后求出球的半径,然后求出球的表面积.
正方体体积为8,可知其边长为2,
正方体的体对角线为
4+4+4= 2
3,
即为球的直径,所以半径为
3,
球的表面积为4π
32 =12π.
故答案为:12π.
点评:
本题考点: 球内接多面体;球的体积和表面积.
考点点评: 本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.