延长BE交AC于F
AD平分BAC,BF丄AD
易知:AB=AF,BE=EF
∠ABF=∠AFB
=>
AC-AB = FC
2BE=BF
则只需证:BF=CF
只需证:∠C=∠CBF
设∠C=X,∠ABF=∠AFB=Y
=>
∠ABC=3X
=>
∠CBF=3X-Y
而
∠CBF+∠C=∠AFB
=>
3X-Y + X=Y
=>
Y=2X
=>
∠C=∠CBF
得证
延长BE交AC于F
AD平分BAC,BF丄AD
易知:AB=AF,BE=EF
∠ABF=∠AFB
=>
AC-AB = FC
2BE=BF
则只需证:BF=CF
只需证:∠C=∠CBF
设∠C=X,∠ABF=∠AFB=Y
=>
∠ABC=3X
=>
∠CBF=3X-Y
而
∠CBF+∠C=∠AFB
=>
3X-Y + X=Y
=>
Y=2X
=>
∠C=∠CBF
得证