抛物线Y2 = 4倍以上的跨F A,B两抛物线的线聚焦,O为坐标原点.如果| AF | = 3,△AOB的面积.
解析:∵抛物线y ^ 2 = 4倍
∴其焦点F(1,0)
∵横直在F抛物线在A,B两点,| AF | = 3 ∴| AF | = X(A)+ P / 2 = 3 ==> X(A)= 3-1 = 2
成抛物线y ^ 2 = 8 ==> Y1 = - 2√2,Y2 = 2√2
∴A(2,-2√2)或A(2,2√2)直线,其方程为y = 2√2(X-1),与抛物线联立解得X1 = 1/2,X2 = 2
∴A(2,2√2),B(1/2, - √ 2)
同样,-2√2的斜率的直线为A(2,-2√2),B(1/2√2)
∴S(⊿OAB)= 1/2 * |的| * |雅镱| = 1/2 * 1 * 3√2 = 3√2/2
其中,| AF | = X(A)+ P /图2是抛物线方程的焦点的半径