点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:
x'=√3x
y'=2y
得:
x=(1/√3)x'
y=(1/2)y'
因(x,y)在曲线x²+y²=1上,则:
[(1/√3)x']²+[(1/2)y']²=1
x'²/3+y'²/4=1
即变换后的曲线C2是:x²/3+y²/4=1
点(x,y)是曲线x²+y²=1上的点,(x',y')是C2上一点,则:
x'=√3x
y'=2y
得:
x=(1/√3)x'
y=(1/2)y'
因(x,y)在曲线x²+y²=1上,则:
[(1/√3)x']²+[(1/2)y']²=1
x'²/3+y'²/4=1
即变换后的曲线C2是:x²/3+y²/4=1