证明:假设p+q>2
因为p>0,q>0
(p+q)^3>8化简后得到
pq(p+q)>2………………………………………………①
p^3+q^3=(p+q)(p^2-pq+q^2)=2…………………………②
所以②/①<1
化简得到
p/q+q/p<2…………………………………………………③
又因为
p/q+q/p≥2√(p/q)*(q/p)
知道p/q+q/p≥2……………………………………………④
由③和④得出矛盾
所以假设不成立
所以p+q≤2
证明:假设p+q>2
因为p>0,q>0
(p+q)^3>8化简后得到
pq(p+q)>2………………………………………………①
p^3+q^3=(p+q)(p^2-pq+q^2)=2…………………………②
所以②/①<1
化简得到
p/q+q/p<2…………………………………………………③
又因为
p/q+q/p≥2√(p/q)*(q/p)
知道p/q+q/p≥2……………………………………………④
由③和④得出矛盾
所以假设不成立
所以p+q≤2