∵ lnx ∴ x>0 ,x -> +∞
xlnx - (x+1)ln(x+1)
= [xlnx - xln(x+1)] - ln(1+x)
= xln[x/(1+x)]- ln(1+x)
= ln[1/(1+1/x)^x]- ln(1+x)
= -ln [(1+1/x)^x]- ln(1+x)
∴
lim(x->+∞) [xlnx - (x+1)ln(x+1)]
= lim(x->+∞) -ln [(1+1/x)^x]- ln(1+x)
= -1-∞
= -∞
∵ lnx ∴ x>0 ,x -> +∞
xlnx - (x+1)ln(x+1)
= [xlnx - xln(x+1)] - ln(1+x)
= xln[x/(1+x)]- ln(1+x)
= ln[1/(1+1/x)^x]- ln(1+x)
= -ln [(1+1/x)^x]- ln(1+x)
∴
lim(x->+∞) [xlnx - (x+1)ln(x+1)]
= lim(x->+∞) -ln [(1+1/x)^x]- ln(1+x)
= -1-∞
= -∞