等差数列{an}中前n项和为An,满足An=A(19-n)(n是正整数,n
1个回答
Sn=S(19-n),
所以S1=S18,S2=S17,……S9=S10.
而S10=S9+a10,
所以a10=0,
此时an的绝对值最小等于0.
故n=10
相关问题
已知等差数列{an}和{bn}的前n项和分别为An和Bn,且满足An/Bn=(7n+1)/(4n+27),n属于正整数,
设数列 an 的前n项和为sn 并且满足2Sn=an^2+n,an>0(n为正整数).
数列【an】的前n项Sn,满足Sn=2an-3n(n属于正整数)
等差数列前n项和问题等差数列{an}{bn}前n项和分别为An和Bn.如果An/Bn=(7n+4)/(n-3)那么a9/
已知等差数列an的前n项和为sn 且满足Sn=n²+n,则通项公式an=?
已知数列an,Sn是其前n项和,且满足3an=2Sn+n(n为正整数),求证[an+1/2]为等比数列
等差数列A1=1,前 n项和满足S2n/Sn=4n+2/n+1 设Bn=(An)p^(An),求前n项和
已知数列{an}前n项和Sn=n^2+n+1(n为正整数),则{an}通项公式?
数列an ,a1=1,前n项和为Sn ,正整数n对应的n an Sn 成等差数列.1.证明{Sn+n+2}成等比数列,
设数列{an}的前n项和为Sn,满足Sn=2an-2^n(n∈N+),令b=an/2^n.求:①数列{bn}为等差数列