已知a、B为锐角,cosa=1/7,sin(a+B)=5√3/14,求角B的值.

1个回答

  • ∵ α,β为锐角,

    ∴ sinα>0 cosβ>0 sinβ>0

    ∵ cosα=1/7

    ∴ sinα=√(1-cos²α)=√(1 - 1/7²)= (4√3)/7

    ∵ sin(α+β)= sinαcosβ+cosαsinβ

    = (4√3)/7cosβ+(1/7)sinβ = (4√3)/7√(1-sin²β) +(1/7)sinβ

    即:(4√3)/7√(1-sin²β) +(1/7)sinβ = 5√3/14

    (4√3)/7√(1-sin²β) = 5√3/14 -(1/7)sinβ

    两边平方

    (48/49)(1-sin²β)= 75/196 - (5√3)/49sinβ + (1/49)sin²β

    sin²β- (5√3)/49sinβ- 117/196 = 0

    (sinβ- (5√3)/98)² = 5808/9604

    sinβ- (5√3)/98 = (44√3)/98

    sinβ = (49√3)/98 = (√3)/2

    β = 60°