x→2时,(x^2+ax+b)/(x^2-x-2)=(x^2+ax+b)/(x-2)(x+1)有极限2,
所以,x^2+ax+b一定有因式x-2,x^2+ax+b=(x-2)(x+c),
且x→2时,(x+c)/(x+1)→2,
(2+c)/(2+1)=2,c=4,
x^2+ax+b=(x-2)(x+4)=x^2+2x-8,
a=2,b=-8.
有没有学过罗比达法则?
lim[x→2](x^2+ax+b)/(x^2-x-2)
=lim[x→2](2x+a)/(2x-1)
=(2*2+a)/(2*2-1)
=2,
4+a=6,a=2.