在一个8x8的方格中,分别填上1,2,3,不可能使每行及每列及对角的和互不相同
8行8列及两条对角线,共有18条“线”,每条“线”上都填有8个数字,要使各条“线”上的数字和均不相同,那么各条“线”上的数字和的取值情况应不少于18种.
如果某一条“线”上的8个数字都填上最小的数1,则可得到数字和的最小值8;如果某一条“线”上的8个空格中都填上最大的数3,那么可得到数字和的最大值24.
由于数字及数字和均为整数,所以从8到24共有17种不同的值.我们将数字和的17种不同的值看作17个抽屉,而将18条“线”看作18个元素.
根据抽屉原理一,将18个元素放入17个抽屉中,一定有一只抽屉中放入了至少两个元素.
即18条“线”上的数字和至少有两个相同,
所以,不可能使18条“线”上的各数字和互不相同.