1、△ABC≌△DFC ∠AFE = ∠CFD = ∠B
∠ACB = 90° ∠A+∠B = 90°
∠AFE+∠A = 90°
∠AEF = 90°
即DE与AB垂直
2、△AEF≌△AED ∠EAF = ∠EAD = (90°-56°)/2 = 17°
∠D = 90° ∠AED = ∠AEF = 90°-17° = 79°
∠CEF = 180°-2*79° = 34°
3、AB = AC AD = AD BD = CD
△ABD≌△ACD ∠1 = ∠2 = 90°
即AD和BC垂直
4、AB = AC AD = AE BD = CE
△ABD≌△ACE
∠BAD = ∠CAE
∠BAD - ∠CAD = ∠CAE - ∠CAD
即∠CAB = ∠EAD
△ABD≌△ACE ∠B = ∠C
∠AFB = ∠CFO (对顶角相等)
∠CAB = ∠BOC
综上所述 ∠CAB=∠EAD=∠BOC