几道关于全等三角形的题目1、如图,△ABC中,∠ACB=90°,△ABC≌△DFC,你能判断DE与AB互相垂直吗?说出你

1个回答

  • 1、△ABC≌△DFC ∠AFE = ∠CFD = ∠B

    ∠ACB = 90° ∠A+∠B = 90°

    ∠AFE+∠A = 90°

    ∠AEF = 90°

    即DE与AB垂直

    2、△AEF≌△AED ∠EAF = ∠EAD = (90°-56°)/2 = 17°

    ∠D = 90° ∠AED = ∠AEF = 90°-17° = 79°

    ∠CEF = 180°-2*79° = 34°

    3、AB = AC AD = AD BD = CD

    △ABD≌△ACD ∠1 = ∠2 = 90°

    即AD和BC垂直

    4、AB = AC AD = AE BD = CE

    △ABD≌△ACE

    ∠BAD = ∠CAE

    ∠BAD - ∠CAD = ∠CAE - ∠CAD

    即∠CAB = ∠EAD

    △ABD≌△ACE ∠B = ∠C

    ∠AFB = ∠CFO (对顶角相等)

    ∠CAB = ∠BOC

    综上所述 ∠CAB=∠EAD=∠BOC