3a[n+1]=an
a[n+1]/an=1/3
故有an=a1q^(n-1)=3*(1/3)^(n-1)=3^(2-n)
bn=an+log3(an)=3^(2-n)+2-n=(1/3)^(n-2)+(2-n)=9*(1/3)^n+(2-n)
Sn=9*1/3*(1-1/3^n)/(1-1/3)+(1+2-n)n/2=9/2*(1-1/3^n)+(3-n)n/2
3a[n+1]=an
a[n+1]/an=1/3
故有an=a1q^(n-1)=3*(1/3)^(n-1)=3^(2-n)
bn=an+log3(an)=3^(2-n)+2-n=(1/3)^(n-2)+(2-n)=9*(1/3)^n+(2-n)
Sn=9*1/3*(1-1/3^n)/(1-1/3)+(1+2-n)n/2=9/2*(1-1/3^n)+(3-n)n/2