tan(π+α)=-1/3
tanα=-1/3
tan(α+β)=[sin2(π/2-α)+4cos²α]/[10cos²α-sin2α]
=(sin2α+4cos²α)/(10cos²α-sin2α)
=(2sinαcosα+4cos²α)/(10cos²α-2sinαcosα)
=(sinα+2cosα)/(5cosα-sinα)
=(tanα+2)/(5-tanα)
=5/16
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
5/16=(-1/3+tanβ)/[1-(-1/3)tanβ]
tanβ=31/43