A/(x+1)+B/(x-1)=(2x+3)/(x²-1)
[(x-1)A+(x+1)B]/(x²-1)=(2x+3)/(x²-1)
[Ax-A+Bx+B]/(x²-1)=(2x+3)/(x²-1)
[x(A+B)+(B-A)]/(x²-1)=(2x+3)/(x²-1)
x(A+B)+(B-A)=(2x+3)
要使等式两边相等,则必有如下等式:
A+B=2
B-A=3
两式相加,
B=5/2=2.5
A=2.5-3=-0.5
A/(x+1)+B/(x-1)=(2x+3)/(x²-1)
[(x-1)A+(x+1)B]/(x²-1)=(2x+3)/(x²-1)
[Ax-A+Bx+B]/(x²-1)=(2x+3)/(x²-1)
[x(A+B)+(B-A)]/(x²-1)=(2x+3)/(x²-1)
x(A+B)+(B-A)=(2x+3)
要使等式两边相等,则必有如下等式:
A+B=2
B-A=3
两式相加,
B=5/2=2.5
A=2.5-3=-0.5