解题思路:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,∠PBE=∠C,根据等角的余角相等可以证明∠BEP=∠CEQ,即可得到全等三角形,从而证明结论;(2)①作EM⊥AB于点M,EN⊥BC于点N,证明△MEP∽△NEQ,发现EP:EQ=ME-NE=AE:CE,继而得出结果;②设EQ=x,根据上述结论,可用x表示出S,确定EQ的最大值,及最小值后,可得出x的取值范围.
(1)连接BE,如图2:
证明:∵点E是AC的中点,△ABC是等腰直角三角形,
∴BE=EC=AE,∠PBE=∠C=45°,
∵∠PEB+∠BEQ=∠QEC+∠BEQ=90°,
∴∠PEB=∠QEC,
在△BEP和△CEQ中,
∠BEP=∠CEQ
BE=CE
∠PBE=∠C],
∴△BEP≌△CEQ(ASA),
∴EP=EQ.
(2)①作EM⊥AB于点M,EN⊥BC于点N,如图3:
∵∠A=∠C=45°,
∴EM=AM,EN=CN,
∵∠MEP+∠PEN=∠NEQ+∠PEN=90°,
∴∠MEP=∠NEQ,
又∵∠EMP=∠ENQ=90°,
∴△MEP∽△NEQ,
∴EP:EQ=ME:NE=ME:CN=AE:CE=1:2,
故EQ=2EP.
②设EQ=x,由①得,EP=[1/2]x,
∴S△EPQ=[1/2]EP×EQ=[1/4]x2,
当EQ=EF时,EQ取得最大,此时EQ=DE×tan30°=30×
3
3=10
3;
当EQ⊥BC时,EQ取得最小,此时EQ=EC×sin45°=20×
2
2=10
2;
即10
2≤x≤10
3,
综上可得:S=[1/4]x2(10
2≤x≤10
3).
点评:
本题考点: 几何变换综合题.
考点点评: 本题考查了几何变换综合题,涉及了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,综合考察的知识点较多,对于此类综合性较强的题目,关键还是需要同学们有扎实的基本功,注意培养自己的融会贯通能力.