1.a(n+1)^2=an^2+4,令bn=an^2,b(n+1)=bn+4,b1=a1^2=1
bn是一个等差数列,其通项bn=4(n-1)+1=4n-3
因an>0,an=√(4n-3)
2.在数列{an}中,a1=2,a(n+1)=an+3n+2,求an
an=a(n-1)+3(n-1)+2=a(n-2)+3(n-2)+2+3(n-1)+2=a(n-3)+3(n-3)+2+3(n-2)+2+3(n-1)+2=a1+3[1+2+...+(n-1)]+(n-1)*2
=2+3n(n-1)/2+2n-2=3n(n-1)/2+2n
=n(3n+1)/2
3.已知a1=1,a(n+1)-an=2^n-n,求an
an-a(n-1)=2^(n-1)-(n-1)
a(n-1)-a(n-2)=2^(n-2)-(n-2)
...
a2-a1=2^1-1
以上各式相加:
an-a1=2^1+...+2^(n-2)+2^(n-1)-[1+...+(n-2)+(n-1)]
=2^n-2-n(n-1)/2
an=a1+2^n-2-n(n-1)/2=2^n-n(n-1)/2-1