x-1/x=2
(x-1/x)²=2²
x²-2+1/x²=4
x²+1/x²=6
x²/x四次方-x²+1
=1/(x²-1+1/x²)
=1/(6-1)
=1/5
由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),
由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以
(ab+1)/b
=a+1/b
=1/(1-c)+c/(c-1)
=1/(1-c)-c/(1-c)
=(1-c)/(1-c)
=1
x-1/x=2
(x-1/x)²=2²
x²-2+1/x²=4
x²+1/x²=6
x²/x四次方-x²+1
=1/(x²-1+1/x²)
=1/(6-1)
=1/5
由b+1/c=1,得:b=1-1/c=(c-1)/c,则1/b=c/(c-1),
由c+1/a=1,得:1/a=1-c,则a=1/(1-c),
所以
(ab+1)/b
=a+1/b
=1/(1-c)+c/(c-1)
=1/(1-c)-c/(1-c)
=(1-c)/(1-c)
=1