主要考察诱导公式的及分类讨论,当k为奇数时,m=sin(kπ+α)/sin(π-α)+cos(kπ+α)/cos(2π-α)=(-sinα)/sinα+(-cosα)/cosα=-2.当k为偶数时,m=sinα/sinα+cosα/cosα=2,因此m构成的集合为{-2,2}
已知m=sin(kπ+α)/sin(π-α)+cos(kπ+α)/cos(2π-α),(k属于z)则m的值构成的集合为?
2个回答
相关问题
-
化简 {sin[α+(k+1)π]+sin[α-(k+1)π]}/[sin(α+kπ)*cos(α-kπ)],k∈Z
-
若sin[(2k+1)π+α]=-√2/2,(k∈Z),则cosα=?已知sin(π-α)=-2/3,则cos(2π-α
-
sin( α+kπ)=cos(α+π+kπ),则α的值是?
-
三角形的诱导公式已知sin(α+kπ)=2cos[α+(k+1)π),k属于Z,求(4 sinα -2 cosα )/(
-
设k∈Z,化简sin(kπ−α)cos[(k−1)π−α]sin[(k+1)π+α]cos(kπ+α)的结果是( )
-
设k∈Z,化简sin(kπ−α)cos[(k−1)π−α]sin[(k+1)π+α]cos(kπ+α)的结果是( )
-
设k∈Z,化简sin(kπ−α)cos[(k−1)π−α]sin[(k+1)π+α]cos(kπ+α)的结果是( )
-
已知α是第四象限角,化简sin(kπ+α)√[1+cos(kπ+α)]/[1-cos(kπ+α)],k属于z
-
已知sin(α-3π)+cos(π/2+α)=m,求证cos(α-7π/2)+2sin(2kπ-α)=3m/2
-
求证:【cos(kπ-α)cos(kπ+α)】/{sin【(k+1)π+α】cos【(k+1)π+α】}=-1