若x^4+y^4=15,x^2y=-3,求x^4-2y^4-3xy^2+x^y+2xy^2+3y^2的值
1个回答
=x^4-2y^4-3xy^2+yx^2+2xy^2+3y^4
=x^4+y^4+yx^2-xy^2
=15+(-3)
=12
相关问题
若x^4+y^4=15,xy^2-x^2y=-5,求x^4-y^4+3xy^2-x^2y-2xy^2+2y^4
若 |x^2-3xy-4y^2|+2√(x^2+4xy+4y^2-1)=0 求3x+6y的值
(x^3+y^3)^2-4xy[x^4+x^2y^2+y^4-2xy(x^2-xy+y^2)]因式分解
x+y=4,xy=2,2x^3y+4x^2y^2+2xy^3
3x^2 y+{xy-[3x^2 y-(4xy^2 +1/2xy)]-(4x^2 y+3/2xy)}
已知:x+y=3,xy=-2,求:1.(3x-4y+2xy)-(2x-5y+5xy)的值;2.(3x-5y+4xy)-(
已知x+y=4,xy=3,求4{xy+2y}+{6x-[2xy-y-3x}}的值
已知x+y=-4,xy=3,求4(xy+2y)+[6x-(2xy-y-3x)]的值
.已知:x-y=1,xy=-2.求:(-2xy+2 x+3y)-(3xy+2y-2x)-(x+4y+xy)的值
x/3y=y/2x-5y=6x-15y/x,求(4x^2-5xy+6y^2)/(x^2-2xy+3y^2)的值