答:tanB=1,tanC=2
sinB=cosB,sinC=2cosC
联立(sinB)^2+(cosB)^2=1及(sinC)^2+(cosC)^2=1可以解得:
sinB=√2/2
sinC=2√5/5
根据正弦定理:b/sinB=c/sinC
c=bsinC/sinB=100*(2√5/5)/(√2/2)=40√10
答:tanB=1,tanC=2
sinB=cosB,sinC=2cosC
联立(sinB)^2+(cosB)^2=1及(sinC)^2+(cosC)^2=1可以解得:
sinB=√2/2
sinC=2√5/5
根据正弦定理:b/sinB=c/sinC
c=bsinC/sinB=100*(2√5/5)/(√2/2)=40√10