(1)由2S n+1=3S n+2得到,2S n=3S n-1+2(n≥2)
则2a n+1=3a n(n≥2),
又a 2=
3
2 ,2S 2=3S 1+2,∴ a 1 =1,
a 2
a 1 =
3
2
则
a n+1
a n =
3
2 (n∈ N * )
故数列{a n}为等比数列,且 a n =(
3
2 ) n-1
(2)由(1)知, a n = (
3
2 ) n-1 ,又由数列{b n}的通项b n=
1
a n ,则 b n = (
2
3 ) n-1
故 T n =
1-(
2
3 ) n
1-
2
3 = 3[1-(
2
3 ) n ]
(3)由(1)知, a n = (
3
2 ) n-1 ,则 S n =
1- (
3
2 ) n
1-
3
2 = 2[(
3
2 ) n -1]
由(2)知, T n =3[1- (
2
3 ) n ]
则3T n>S n(n∈N +)⇔ 9[1- (
2
3 ) n ]>2[ (
3
2 ) n -1] ,
令 t= (
3
2 ) n (t>1),则 9(1-
1
t )>2(t-1) ,
解得 1<t<
9
2 ,即 1<(
3
2 ) n <
9
2
又由 f(x)=(
3
2 ) x 在R上为增函数, (
3
2 ) 3 =
9
2 ×
3
4 , (
3
2 ) 4 =
9
2 ×
9
8 ,
故n=1,2,3