已知数列{a n }的前n项和为S n ,a 2 = 3 2 ,2S n+1 =3S n +2(n∈N * ).

1个回答

  • (1)由2S n+1=3S n+2得到,2S n=3S n-1+2(n≥2)

    则2a n+1=3a n(n≥2),

    又a 2=

    3

    2 ,2S 2=3S 1+2,∴ a 1 =1,

    a 2

    a 1 =

    3

    2

    a n+1

    a n =

    3

    2 (n∈ N * )

    故数列{a n}为等比数列,且 a n =(

    3

    2 ) n-1

    (2)由(1)知, a n = (

    3

    2 ) n-1 ,又由数列{b n}的通项b n=

    1

    a n ,则 b n = (

    2

    3 ) n-1

    故 T n =

    1-(

    2

    3 ) n

    1-

    2

    3 = 3[1-(

    2

    3 ) n ]

    (3)由(1)知, a n = (

    3

    2 ) n-1 ,则 S n =

    1- (

    3

    2 ) n

    1-

    3

    2 = 2[(

    3

    2 ) n -1]

    由(2)知, T n =3[1- (

    2

    3 ) n ]

    则3T n>S n(n∈N +)⇔ 9[1- (

    2

    3 ) n ]>2[ (

    3

    2 ) n -1] ,

    令 t= (

    3

    2 ) n (t>1),则 9(1-

    1

    t )>2(t-1) ,

    解得 1<t<

    9

    2 ,即 1<(

    3

    2 ) n <

    9

    2

    又由 f(x)=(

    3

    2 ) x 在R上为增函数, (

    3

    2 ) 3 =

    9

    2 ×

    3

    4 , (

    3

    2 ) 4 =

    9

    2 ×

    9

    8 ,

    故n=1,2,3