x>0,y>0
则x+y>=2(xy)^(1/2)
xy-(x+y)=1
xy-2(xy)^(1/2)-1>=0
解得(xy)^(1/2)=1+2^(1/2)
又xy>0
xy>=(1+2^(1/2))^2=3+2*2^(1/2)
xy-(x+y)=1
(x+y)^2-4(x+y)-4>=0
x+y>=2+2*2^(1/2)
x>0,y>0
则x+y>=2(xy)^(1/2)
xy-(x+y)=1
xy-2(xy)^(1/2)-1>=0
解得(xy)^(1/2)=1+2^(1/2)
又xy>0
xy>=(1+2^(1/2))^2=3+2*2^(1/2)
xy-(x+y)=1
(x+y)^2-4(x+y)-4>=0
x+y>=2+2*2^(1/2)