若l1与l2不垂直,即k1·k2≠-1
2x-y+1=0与x-3y-3=0中,k1=2,k2=1/3,所以k1·k2≠-1,即l1与l2不垂直.
故,直线2x-y+1=0与x-3y-3=0满足tanθ=│(k1-k2)/(1+k1k2)│
所以tanθ=(5/3)/(5/3)=1
所以θ=45°或225°
若l1与l2不垂直,即k1·k2≠-1
2x-y+1=0与x-3y-3=0中,k1=2,k2=1/3,所以k1·k2≠-1,即l1与l2不垂直.
故,直线2x-y+1=0与x-3y-3=0满足tanθ=│(k1-k2)/(1+k1k2)│
所以tanθ=(5/3)/(5/3)=1
所以θ=45°或225°